大数据培训新三板挂牌机构 股票代码:837906 | EN CN
阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论

于2017-04-01由小牛君创建

分享到:


大数据培训,就上小牛学堂

文|飞林沙

这篇本应在一周前产出的年底总结被拖延症拖到了现在,上午和同事去深大校园里逛了两个小时,看着学生们悠闲地背着书包走在去往自习室、图书馆的路上,不禁感叹原来自己已经毕业了六年时间。六年来,我从最初的Web开发人员接触到一些服务端开发,然后莫名其妙成为了业界最火热的大数据工程师、数据科学家。在职责上,从单枪匹马搞定所有事儿,到带领十几人的数据团队去做一个领域的探索,再到带领几十人的部门去做实验产品尝试,再到现在作为CTO跟着百人的产品研发团队高速奔跑,看着公司一年时间完成近十倍的增长。回忆种种,恍若云烟。

回头看过去的2015,也许是入职了一个和之前不一样的企业,也许是接触到了与之前不同的人,也许是背负了无法与往日相比的压力。所以我尝试着将一些想法写出来,没有主题,没有主次,想到哪儿写到哪儿。

大数据培训,就上小牛学堂

1.企业级服务公司的思考

今年最大的变化,是我第一次从一个互联网行业进入了一个企业级服务市场,经过一年的适应和思考,让我对企业级服务市场有了更多新的看法。那我就先来说下我眼中的企业级服务吧。众所周知,企业级市场与互联网公司的发展不同,他与当前创业环境、公司资金等息息相关,我们回忆一下《创业维艰》就知道在差的资本环境下,一个企业级服务公司有多难生存下去。

企业级服务的公司到底如何做利润,如何做大是我最近一年一直思考的问题。先从最基本说起,企业从最基本的诉求来说为什么使用云服务,例如企业为什么要使用阿里云、七牛等等,根源无外乎:1. 动态扩展能力 2. 低人员技术成本 3. 不需要去做脏活累活。归根结底的说就是企业认为做这些事情的ROI不如交给云服务公司的ROI高,例如把图片存储在我自己这儿每年需要耗费100W的机器成本+20W的人员维护成本,稳定性可以达到99.9%,那作为一个理智的技术决策者,一定会要求厂商用100W的计算解决问题,并且稳定性不可以低于99.9%。那我们这个时候把视角从客户视角切回到云服务厂商视角,那我们要如何才能赚钱呢?

A.寄望于客户的水平在平均线以下,例如改造XMPP,业界的平均水平是2个人月的水平,但是很多客户需要10个人月,这样相当于赚了8个人月的钱。但是这其实是一种极烂的做法。具体会在下文中有所表述。

B.动态扩展能力这一点是客户使用很多云服务的理由,那么如何通过资源的合理规划在这方面去赚钱呢?我倒是有些思路,但是从目前来看还需要较长的路要去走。举个简单的例子,假设说每次某电商网站双11抢购时都需要1000台服务器才能满足需求,也就是说不采用云服务至少需要1亿左右的预算,但是其实大部分时间其实只需要10台服务器就足够了,于是想办法降低服务器闲置率就是我们可以赚的钱。但是目前的云服务厂商(我视野范围内的)还无法做到这一点。假设说淘宝、京东、唯品会同时使用了我的云服务,也就意味着我需要准备 淘宝+京东+唯品会三家的机器总和,如果他们每一家的机器闲置率是90%,那我也同样是90%。所以真正想做到这一点需要的是对客户进行明确的划分,通过不同的客户策略组合从而提高机器闲置率,例如构建淘宝(双11)+亚马逊(黑色星期五)这样的组合,把机器的闲置率从90%降低到70%。这是一个很理想的情况,在实操中会遇到很多的困难,在下文中我会再次提及。

C.承包脏活累活。这一点其实是国内大部分云服务厂商赚钱的主要途径,帮你把麻烦的事儿给做了,比如你懒着去做个统计后台,我帮你搞了;你懒着去搭个Docker服务,我帮你搭好;你懒着去做安全策略,我帮你做了。但是回归到我们上面说的ROI的问题,这必然会导致利润率极低,这并不符合互联网企业高利润率的模式,而基本纯粹属于外包公司了。这并不应该成本云服务厂商的立足之本。

D.通用方案的快速复制。这个和过去的ERP公司很类似,做出标准产品,然后去兜售给各个客户。和上面的点一样,这也是现在云服务厂商的立足之本。可是当我们回忆一下ERP时代的企业的赚钱方式,我没太听说哪一家是通过把一个通用性软件卖给客户然后就能赚到大钱的,基本赚钱的费用都是在定制化、后续维护费用。但是定制化的成本其实又回到了上文的ROI上,不再赘述。此外,还有一点ERP软件的赚钱方式,就是扎根于某一特定领域,例如用友金蝶的财务软件等,这似乎又与如今的云服务厂商发展路线相悖。所以这听上去很美,却依然是一个低利润的事情。

从上面四点来看,只有第二点才是值得去发展的路,先记在这里。

大数据培训,就上小牛学堂

2.云服务和大数据

在过去一年无数次的采访和演讲中,我都努力在讲一个概念,就是云服务和大数据的结合。只有平台级产品才有大数据的理论,我也不厌其烦的反复提及。那么相比于传统“云平台”的低利润外,大数据所产生的高利润率似乎更让人幻想。相比于机器学习,数据挖掘这些技术而言,更困难的还是数据如何才能产生商业价值。在过去的一年里,我们做了各种各样的尝试,取得了一些小的成果,也对未来的方向有了一些更清晰的认识。

谈到数据变现时,我们需要做更多的产品和商业层面的思考,在这些上面,我走了太多的弯路:

A.我们更应该清晰地识别出哪些业务是需要数据的

我们到底是在拿着数据去找业务,还是在用业务来倒推数据的价值。如何识别是否在拿着锤子找钉子,我有一个特别简单的方法供参考,一个方案需要Rule-based来解决问题,还是需要通过Machine Learning来解决问题。我们想下什么样的方案是没办法通过Rule-based无法解决的问题。例如Uber希望通过大量的数据行为来缓解交通堵塞,这不是rule-based可以解决的问题。抽象来说,大数据的真正价值是通过海量实时多样的数据,通过机器学习训练出最适合的模型,这个模型抽象了人类几乎不可能完成的复杂规则引擎,而深度学习在大数据时代的流行很大程度上也是因为其对大量特征的组合再加工,这也可以看做是数据多样化的必然产物。

B.这些数据引入前和引入后到底能产生多少额外价值?

因为这个取决于企业到底愿意为数据服务买多少的单。例如互联网金融公司希望利用大量的数据去做征信模型,但是当引入新的因素变量时,哪怕让准确率有1%的提升,都会产生极大的经济价值。

C.实时数据能产生多少的价值?

实时数据意味着合作的长久性,例如对于音乐推荐产品来说,如果提供的数据只是三年前的数据,那么数据效果会极差,所以这样就保证了公司必须不断使用实时的数据方案来满足需求。

以上几点其实决定了你要为哪些行业提供数据解决方案,最初的时候我的想法依然是停留在互联网公司上,希望能够利用平台上多样化的大数据去帮助互联网公司精细化运营,例如优化推送方案,优化推荐内容,但是现实告诉我这条路还走不通,问题就在于A和B两点,规则引擎可以解决问题&引入多样化数据后产生的经济价值略低。这也是在未来一年甚至几年内需要持续思考的问题,但是这条路是被判死刑的么?我是否认的。 另外,在上一节中,我为何说寄望于客户的水平在平均线以下去赚钱不现实,这就引出了下一个话题,关于创业。

3.关于创业

最近的一年时间里,我接触了大量的创业者,他们会咨询各种各样的问题,在这里我简单谈下我的一些看法:

A.世界一定在朝着好的方向发展。任何一个颠覆性的创业想法一定有着缺陷,或许是因为政策,或许是因为习惯,或许是因为大众的水平。所以在面对着很多“不靠谱”想法的时候,我更愿意去思考这个应该在什么时候去做才比较合适。例如我有个朋友,一直想做一个时尚类的APP,用他的话说,大部分中国人的审美太“淘宝”风了。我认为这个出发点是好的,并且在国外已经有很多成功的案例,我们也相信大众的审美必然从“淘宝风”转为“个性化”,只是这个时机应该是什么时候更合适的问题。所以我并不认同基于“丑陋”的一面去创业,例如在用户不知情的时候推送广告,例如所谓的“利用人性”,再例如朋友圈的小红点。

B.曾经我一直认为创业就是解决用户的某个痛点需求,现在我更认为创业其实是在一个大环境下基于上下文去解决一个大家尝试解决很多次的问题,说的更大一点,真正的创业解决的是补全生态链。仍然以上述的时尚类APP为例,做成一个时尚应用,要保证的是买家用户审美水平的提高,卖家设计水平的提高,供应链的资源充足,独立设计师与买家之间的纠纷解决等一系列问题。这绝不仅仅是一个APP所能解决的,这个APP的成功应该仅仅是补全其中的一环,并且在这一环做到最佳的体验。

那么如何去甄别呢?

A.对标法。这个是投资人最常用的做法:国外有没有类似的产品,国内有没有类似的产品,他们为什么没有成功,你是怎么解决这些问题的?这种方式简单粗暴,但是只能看到问题,不能解决问题,而且极容易陷入创新的死胡同。

B.链条整理法。既然我上文说到了创业其实是补全生态链,那么请先划出这个产品的成功需要依赖于哪些条件,也就是他的链条上下游分别是什么,例如“大众审美的提高”等。这些依赖的条件是否已经得到解决,是怎么解决的?在你的产品出现前,链条的这部分是如何被填补的,这个方案有什么瓶颈?这个瓶颈是在他的上下游还是自己本身? 另外,因为创业产品的发展绝不仅仅是自身体验的完善,规模的扩大,更大的程度上还是取决于整个生态链的进步,所以要进一步地去问自己,这个链条上除了我的环节,其他环节发展如何,他们的增长曲线预计会是什么样?

更愿意从大局,而非产品本身去看待问题也许是我这一年的一个进步。

4.对于迭代的再次思考

互联网公司多年的经验,在我脑子里固化了小步快跑,敏捷迭代的思想,而这让我来到极光之后非常的不适应。强调设计,强调文档,对于质量的控制,强调稳定,这在我之前的经历里是没有的,甚至是相违背的。

在敏捷迭代模型中,做法是需求->设计->编码->测试->设计->编码->重构,如此往复。但是这个模型在执行过中出现了太多的问题,从客户端而言,设计的不稳定必然会导致API频繁发生变化,而且SDK的更新版本往往都是取决于开发者本身。对于一个APP而言,应用的一个Bug可能只会带一个版本,而对于SDK而言,由于多了开发者的这一环,所以这注定是无法敏捷的。从服务端而言,设计的失误会导致大批量的服务受影响,并且服务端的数据问题又将持续被困扰很久。那是不是意味着敏捷迭代注定和企业级开发无缘呢?

我更愿意认为企业级服务需要采取的是另外一种方式:

A.产品计划不能迭代。对于云服务厂商而言,产品计划最直观就是反映到API如何设计,软件如何做基本的分层架构,服务端客户端采用什么样的分工方式。

B.整体设计不能迭代。这里指的整体设计是说针对产品需求,需要对接下来的技术整体方案有整体的设计,大到SDK和服务端的通讯协议,服务端的整体架构方式,机架的分布,小到API的设计稳定性,这些是必须要稳定的。

C.设计方案需要迭代。当大的架构模式确定后,小的设计方案我个人认为是值得迭代的,例如存储方案到底使用MySQL还是PG,消息队列到底使用RabbitMQ还是Kafka,不妨上线灰度测试,然后设计方案,由于真实环境和测试环境的差异性,这里需要评估压力测试等的时间成本。

D.功能开发需要迭代。当我们理清上述的设计后,可以将产品和架构的设计图加以切分,根据聚类找到连通子图,拆分迭代开发,如果A的效果不好,那么B自然无需继续开发。

E.经常重新Review设计。人非圣贤,即便再好的技术都无法保证设计的合理性,把不合理的设计扼杀在萌芽里,而不是等着他即将爆发的那一天。

5.数据的未来

随着互联网环境的逐渐成熟,任何企业无论是管理还是产品都必然走入精细化、数字化的层面,那么如何定义自己是一家大数据公司?并不是说我自己有着很多的数据,而是由数据来驱动整个公司的发展。

现在我看到的大多数公司基本都是在问我,我们现在有这么多的数据,我们可以做点什么?其实这个思路也许在以后会改成我们想做这个,那么我们需要哪些数据?从产品层面,例如我们需要做征信服务,那么我们都需要哪些数据,这些数据我需要怎么样才能获得?这是数据驱动开发的思路。 从运营层面,回到我在第一点所说,如果云服务公司的一大盈利点是通过对机器闲置率的调度优化,那么是否应该利用数据对销售进行更加合理的驱动,这是数据驱动市场。从管理层面,我们如何计算一个公司需要的最佳人数,如何评估每个人的绩效,这自然是数据所决定的,这是数据驱动管理。

而这些,都是数据人员需要去探索和努力的路。

6.反思 & 提高

A.商业推动能力的不足。这算是我对自己最大的批评吧,在今年,其实有着太多的公司合作,但是我却并没有办法去把握利益的平衡。

B.行业背景知识的不足。传统企业知识的缺乏导致我没办法真正理解他们的架构和需求,更没办法对方案进行包装达到他们想要的结果。

C.抵御技术细节的诱惑。这是一个技术人员成长为管理人员的最大问题,抓全局而轻细节,毕竟时间和精力都有限,而回顾起来我还是浪费了太多时间。

希望新的一年会有所提高吧。

飞林沙:商品推荐算法&推荐解释

重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考

需求与匹配 从数据挖掘角度看世纪佳缘推荐系统

End.